
RL Project - Applied case studies of Machine Learning

Rava Miro, Lucchina Luca, Nazifi Endrit, Sommaruga Tommaso

SUPSI

Abstract
This report explores the application of reinforcement learning (RL) techniques to robotic control
tasks, specifically training a Franka Emika Panda robotic arm to autonomously grasp and lift
a cube. The study leverages the Proximal Policy Optimization (PPO) algorithm in a MuJoCo-
powered simulation environment to achieve robust task execution.

Results demonstrate that iterative refinement of the reward function was critical in addressing
unintended behaviors, such as balancing the cube on its vertices instead of lifting it. Additional
metrics, such as cube height and grasp counts, enhanced observability, enabling more efficient
debugging.

Contents

1 Problem Definition 2
1.1 Task Overview 2
1.2 Objectives of the Project 2

2 Provided Setup 2
2.1 Codebase and Structure 2
2.2 Simulation Environment 3
2.3 Robot Description 3

3 Reward Function Design 3
3.1 Conceptual Approach 4
3.2 State Management 4
3.3 Intermediate Rewards 4
3.4 Additional Components (e.g.,

Rotation Penalty) 4
3.5 Merging 5

4 Experiments and Methodology 5
4.1 Reward Function Iterations . . 5
4.2 Hyperparameter Tuning 6

5 Results and Observations 7
5.1 Training Performance and Be-

havior 7
5.2 Challenges: The ”Balancing

Maneuver” 7
5.3 Enhanced Observation and

Data Logging 8

5.4 Insights From Iterative Refine-
ment 8

6 Challenges Encountered 9

6.1 Attempts to Install mujoco-py . 9

6.1.1 Native Installation on
Ubuntu 9

6.1.2 Containerized Installa-
tion Using Docker 9

6.1.3 Virtual Machine Setup
on Windows 10

6.1.4 Switching to the Mod-
ern MuJoCo Library . . 10

6.2 Broader Implications and Ob-
servations 10

6.3 Recommendations for Future
Iterations 10

6.4 Personal Reflection Of Our
Group 11

7 Insights and Future Work 11

7.1 Key Insights 11

7.2 Recommendations for Future
Efforts 11

7.3 Final Thoughts 12

8 Conclusions and Acknowledg-
ments 12

BSc of Data Science and AI - SUPSI

1 Problem Definition

1.1 Task Overview

The primary task in this project involves
training a Franka Emika Panda robotic arm
to autonomously grasp and lift a cube placed
on a flat surface. This requires the develop-
ment of a learning system that can enable the
robot to:

1. Approach the Cube: Navigate its
gripper to a position suitable for grasp-
ing.

2. Securely Grasp the Cube: Control
the gripper’s motion to successfully pick
up the object without dropping it.

3. Lift the Cube: Raise the cube off the
surface to a designated height.

The robot’s ability to perform these ac-
tions relies on reinforcement learning tech-
niques. Specifically, the project uses the Prox-
imal Policy Optimization (PPO) algorithm, a
widely used RL method for continuous con-
trol tasks. The learning process occurs in a
simulated environment powered by MuJoCo,
where physics interactions such as friction and
collision are realistically modeled.

1.2 Objectives of the Project

The final goal of this project is to enable
robust task execution through reinforcement

learning. This is achieved through the follow-
ing objectives:

1. Designing an Effective Reward
Function: A critical part of the RL sys-
tem is the reward function, which guides
the agent by providing feedback at dif-
ferent stages of the task. Instead of
sparse rewards provided only upon suc-
cessful task completion, this project ex-
plores reward shaping, where intermedi-
ate rewards are assigned to encourage
step-by-step progress.

For example:

• A small reward for reducing the
distance between the gripper and
the cube.

• A reward for successful grasping
and lifting.

• Penalties for dropping the cube or
twisting the arm.

2. Optimizing Training Parameters:
The learning process is sensitive to hy-
perparameter choices such as learning
rate, discount factor, and batch size.
The project involves also experiment-
ing with these parameters to understand
their impact on the robot’s performance
and stability during training.

2 Provided Setup

Codebase structure, simulation environment, and robot features essential for
reinforcement learning in robotic grasping tasks.

2.1 Codebase and Structure

The project was built upon a pre-existing
codebase designed to facilitate reinforcement
learning for robotic grasping tasks. The key
components of the codebase include:

• config/: Contains configuration files
that allow customization of hyperpa-
rameters such as learning rate, discount
factor, and batch size.

• controller/: Implements controllers
that translate high-level policy actions

2

BSc of Data Science and AI - SUPSI

into joint torques for the robotic arm.

• environments/: Provides the main
logic for task simulation and interaction,
including physics modeling and reward
function definition.

• models/: Manages simulation objects
and robot modeling.

• rl/: Includes implementations of rein-
forcement learning algorithms such as
Proximal Policy Optimization (PPO)
and Soft Actor-Critic (SAC).

• utils/: Offers utility functions for
data processing, logging, and additional
tasks.

This modular structure facilitated efficient ex-
perimentation and modifications during the
project.

2.2 Simulation Environment

The simulation environment was powered by
the MuJoCo physics engine, known for its
high-fidelity modeling of rigid-body dynam-
ics and continuous control scenarios. The
environment features a Franka Emika Panda
robotic arm placed near a flat table, with a
cube serving as the primary object of interac-
tion.

Key elements of the simulation include:

• Realistic physical properties such as fric-
tion, gravity, and collision detection.

• Adjustable initial conditions, including

cube position and orientation.

• Real-time visualization for observing
the robot’s interactions and behaviors.

2.3 Robot Description

The Franka Emika Panda robot is a
seven-degree-of-freedom (7-DOF) robotic arm
equipped with a two-fingered parallel gripper.
Its advanced design makes it ideal for preci-
sion tasks such as grasping and manipulation.

[fig 2.3] The provided setup (the robot arm is
lifting the cube here).

Features of the robot include:

• High dexterity due to its multiple joints,
enabling complex movements.

• A gripper with adjustable force and po-
sition control, crucial for securely grasp-
ing objects.

• Compatibility with the MuJoCo physics
engine, allowing seamless integration
into the simulation environment.

3 Reward Function Design

This section describes the approach taken in reward function design

The reward function is a critical component of the reinforcement learning setup, guiding the
agent toward the desired behavior. In this task, the goal is to design a reward system that
incentivizes the robot to manipulate and interact with an object effectively. The following
subsections outline the conceptual approach, state management, and various components that
contribute to the reward design

3

BSc of Data Science and AI - SUPSI

3.1 Conceptual Approach

The primary objective of the reward function is to encourage the robot to reduce the distance to
the target object (a cube), grasp it, and manipulate it within a defined workspace. The reward
is a dynamic function of the gripper’s position relative to the cube and considers various factors
like distance, alignment, and action intensity. The reward is adjusted based on the following
principles:

• Distance-based reward: When the robot moves closer to the target, it receives a
positive reward, while larger distances are penalized.

• Action-based penalty: If the gripper applies an unnecessary force or incorrect action
(e.g., gripping when not needed), it receives a penalty.

• Grasping and manipulation incentives: If the gripper successfully grasps the cube
and manipulates it, the reward increases significantly.

3.2 State Management

State management involves tracking and updating the key variables that influence the reward.
The state is primarily defined by the relative positions of the cube and the robot’s gripper, as
well as the action being taken by the robot. These state variables are used to compute the
reward in the following way:

• Cube Position: The position of the target cube is tracked using:
self.sim.data.body xpos[self.cube body id].

• Gripper Position: The position of the robot’s gripper is monitored using:
self.sim.data.site xpos[self.eef site id].

• Distance Calculation: The Euclidean distance between the gripper and the cube is
computed as:

dist to cube =
√

(xgripper − xcube)2 + (ygripper − ycube)2 + (zgripper − zcube)2

3.3 Intermediate Rewards

Intermediate rewards incentivize the robot for making progress towards the goal. These rewards
are conditional based on the distance to the cube:

• Large Distance (dist > 0.3): A significant penalty is applied to discourage the robot
from moving too far away.

• Moderate Distance (0.03 < dist < 0.3): A reward is given based on the inverse of the
distance, encouraging the robot to approach the cube.

• Small Distance (dist < 0.03): At this stage, if the robot is in close proximity to the
cube, the reward is further adjusted based on the grasping quality and action behavior.

3.4 Additional Components (e.g., Rotation Penalty)

Additional rewards are given based on specific actions or conditions:

4

BSc of Data Science and AI - SUPSI

• Action-based Penalty: If the action involves closing the gripper too soon, a penalty is
applied, such as:

penalty = −1× action[-1]

• Grasp Check: If the robot successfully grasps the cube, further rewards are added.
The grasp quality is checked with self.check grasp(self.sim.data.contact). If the
gripper maintains a good grasp (either current or previous), the reward increases based
on the quality of the grasp and the rotation of the cube.

• Manipulation Reward: A significant reward is given if the robot not only grasps the
cube but manipulates it correctly, e.g., by lifting it without rotating it.

3.5 Merging

The reward function is designed to:

• Encourage the robot to approach the cube.

• Penalize unnecessary actions that take the robot farther from the goal.

• Reward proper grasping and manipulation, ensuring the robot is incentivized to complete
the task effectively.

By Merging all these considerations, the reward function obtained became a robust mechanism
for guiding the robot’s learning process.

4 Experiments and Methodology

This section provides an overview of the experimental setup, methodology, and
the hyperparameter tuning process.

At this stage, we conducted a series of experiments to evaluate the effectiveness of various
reward functions and to fine-tune the learning process of the robot arm. Over 20 different reward
functions were tested iteratively, with each batch of experiments targeting specific aspects of
the robot’s behavior.

4.1 Reward Function Iterations

The experiments were divided into different
phases, each focusing on distinct aspects of
the robot’s task. Initially, we focused on test-
ing reward functions that would encourage the
robot arm to approach the target cube. The
first five reward functions were designed to ad-
dress this objective. These reward functions
primarily provided positive feedback based on
the robot’s proximity to the cube, incentiviz-
ing it to move closer and align with the target
object.

In the next set of experiments, another five
reward functions were tested to encourage the
robot arm to open the gripper and prepare
for grasping the cube. These reward functions
were specifically crafted to penalize the robot
if it kept its gripper closed, and to reward it
when the gripper was opened. The idea was
to allow the robot to develop a clear under-
standing of when to release the gripper and
when to grasp the cube.

The final set of experiments combined both
the proximity-based rewards and the grip-
per behavior rewards, while introducing addi-

5

BSc of Data Science and AI - SUPSI

tional incentives for lifting the cube and penal-
ties for rotating it. The latter modification
was crucial because we observed that, without
the penalty for rotation, the robot arm tended
to rotate the cube on one of its vertices, lift-
ing the center but not successfully raising the
cube off the table. Thus, the penalty for rota-
tion was implemented to discourage such un-
desirable behavior and encourage the robot to
lift the entire cube off the surface.

The methodology for selecting the best reward
functions involved trial and error. We closely
monitored several key metrics during each ex-
periment: the reward plot, the grasp counter
(which we implemented to track the number
of successful grasps), the cube’s height in me-
ters, the episode success plot, and the various
loss plots. This data provided insights into
how the robot was learning and where adjust-
ments could be made in the reward functions.

4.2 Hyperparameter Tuning

In addition to experimenting with different
reward functions, we also focused on fine-
tuning the hyperparameters of the reinforce-
ment learning model. Hyperparameter tuning
was an essential part of the methodology, as it
significantly influenced the stability and per-
formance of the learning process. Each hyper-
parameter was iteratively adjusted and tested,
requiring over 40 runs of the model, each of
which could take up to 8 hours to complete.
The following hyperparameters were the pri-
mary focus:

• clip param: This parameter controls
the clipping range for PPO’s policy up-
dates, ensuring that updates do not de-
viate too much and preventing instabil-
ity in the model. A smaller value for
clip param resulted in more conserva-
tive updates, slowing down the learn-
ing process but improving stability. A
larger value allowed the model to ex-
plore more aggressively but led to higher
instability.

• value loss coeff: This coefficient de-
termines the weight of the value func-
tion loss in PPO. It balances the impor-
tance of value estimation versus policy
optimization. Higher values for this pa-
rameter placed more importance on im-
proving value estimates, potentially at
the cost of slower policy improvement.
Lower values allowed faster policy up-
dates but could lead to less accurate
value estimates.

• action loss coeff: This parameter
controls the weight for the action (pol-
icy) loss. It determines how much the
policy should be penalized for subopti-
mal actions. A higher weight increased
the focus on optimizing the policy, lead-
ing to faster but less stable improve-
ments in the agent’s behavior.

• entropy loss coeff: This coefficient
encourages exploration by penalizing
certainty in action selection. Higher
values for entropy loss coeff promote
more exploration of different actions.
However, excessive exploration can re-
duce the model’s ability to exploit
learned behaviors effectively. Instead,
lower values encourage the agent to ex-
ploit known actions, leading to faster
convergence at the risk of prematurely
converging to suboptimal solutions.

• gae lambda: This parameter controls
the bias-variance tradeoff in Generalized
Advantage Estimation (GAE). A higher
gae lambda reduces bias but increases
variance, leading to more volatile learn-
ing.

We also experimented with adjusting the dis-
count factor and learning rate. Reducing the
discount factor resulted in the robot focusing
more on immediate rewards, leading to faster
reactions but less long-term planning. Con-
versely, a higher discount factor encouraged
the robot to consider future rewards more
heavily, promoting long-term strategies but

6

BSc of Data Science and AI - SUPSI

potentially slowing down the learning process.
Similarly, the learning rate determined the
size of each policy update. A smaller learn-
ing rate led to more gradual changes, which
helped stabilize learning but increased the to-
tal number of iterations required for conver-
gence. A larger learning rate allowed faster
learning but often led to instability and re-
duced repeatability of actions.

Through this extensive hyperparameter tun-
ing process, we found that the default param-
eters provided a balanced tradeoff between
exploration and exploitation. While adjust-
ing these parameters did lead to some im-
provements in specific areas, it also introduced
higher instability and made the model’s be-
havior less repeatable. We observed that re-

ducing the discount factor and learning rate
led to more stable results but at the cost of
slower convergence. Specifically, the robot
was able to reach episode success after 500,000
iterations with the default settings, but re-
ducing the learning rate and discount factor
delayed this success until around 8 million it-
erations.

Overall, hyperparameter tuning was a time-
consuming process that required numerous it-
erations to find a good balance between sta-
bility and learning speed, each iteration took
sometimes many hour to conclude. The in-
sights gained from these experiments helped
refine the model and improve its overall per-
formance in grasping and manipulating the
cube.

5 Results and Observations

A complete overview on the results of the project

In this section, we summarize the results obtained from our experiments, highlight the key
observations made during the training process, and discuss how modifications to the reward
function and methodology influenced the robot’s performance.

5.1 Training Performance and
Behavior

The results showed that certain reward func-
tions allowed the robot to successfully grasp
the cube within approximately 300,000 steps
and lift it by 500,000 steps. However, these
runs often exhibited bursts of correct behav-
ior followed by periods of instability during
the later stages of training.

In contrast, other runs exhibited more bal-
anced learning and exploration phases, where
the robot consistently learned to pick up and
lift the cube. Despite this success, these runs
revealed a lack of direction, as the robot would
lift the cube without having a clear goal. To
address this, we implemented a target position
for the cube, incentivizing the robot to trans-
port the cube to a specified point in space.

[fig 5.1] Values of the different reward
functions tried during the training.

5.2 Challenges: The ”Balancing
Maneuver”

One of the main challenges we observed was
what we termed the ”balancing maneuver.”
During this maneuver, the robot arm would

7

BSc of Data Science and AI - SUPSI

attempt to balance the cube on one of its ver-
tices instead of lifting it fully off the table.
This behavior occurred because balancing the
cube allowed the robot to lift its center, which
satisfied the reward criteria, without actually
achieving the task objective.

[fig 5.2] The Robot balancing the cube on
one of it’s angles.

To address this, we introduced an angle factor
into the reward function. This factor penal-
ized the robot if the cube was twisted exces-
sively from its initial orientation, even making
the reward negative in such cases. This modi-
fication helped the robot correct its behavior,
and after completing the exploration phase, it
began exploiting the correct path to lift the
cube and transport it to the target position.

5.3 Enhanced Observation and
Data Logging

To better monitor key metrics during train-
ing, we modified the base functions in the
MuJoCo-py code to log additional parame-
ters. Specifically, we tracked:

• Cube height in meters: Allowed us
to monitor how consistently the robot
was lifting the cube off the table.

• Cube distance to target in meters:
Helped assess how effectively the robot
transported the cube toward the target
position.

• Grasp count: Provided insight into
how often the robot was success-

fully grasping the cube during training
episodes.

These metrics were logged alongside the re-
ward plot and the episode success plot in
Weights and Biases (WandB). This combina-
tion of visualizations gave us a comprehen-
sive view of the training process and allowed
for quicker iteration and refinement of reward
functions.

[fig 5.3] Performance metrics during training,
showcasing the robot’s progression.

5.4 Insights From Iterative Re-
finement

The iterative, trial-and-error approach proved
to be more efficient than attempting to design
a perfect reward function from the start. By
observing the plotted metrics in real time, we
were able to identify incorrect behaviors and
adjust parameters or the reward function ac-
cordingly, without waiting for the complete
training process to finish (which could take
5–8 hours per run).

This approach not only accelerated our work-
flow but also reinforced our understanding of
how reinforcement learning models operate.
Combining theoretical insights with practical
experimentation allowed us to converge on an
optimized solution where the robot success-
fully grasped the cube, lifted it off the table,
and transported it to the target position ap-
proximately 55 cm above its starting location.

8

BSc of Data Science and AI - SUPSI

[fig 5.4] The Robot arm lifting the cube up
to the target position.

After finalizing the reward function, we con-
ducted additional iterations with various hy-
perparameter values. However, deviations
from the default settings often led to instabil-

ity during training. To ensure that our results
were robust and not a fluke, we introduced
random noise to the robot arm’s starting po-
sition in each simulation iteration. Interest-
ingly, this modification smoothed the reward
plot and slightly accelerated convergence. We
attribute this behavior to the added noise en-
couraging the model to generalize more effec-
tively, thereby avoiding overfitting to local op-
tima.

During the final training run, we extended the
training steps to 20 million. Around the 15
million mark, the reward plateaued and be-
came unstable, indicating that the robot was
no longer consistently exploiting the learned
optimal behavior. Instead, it reverted to an
exploratory phase, testing various suboptimal
strategies. This behavior suggests that the
model may have encountered limitations in its
ability to balance exploitation and exploration
over extended training, possibly due to over-
fitting or saturation in the learning process.

6 Challenges Encountered

A non-exhaustive description of the challenges encountered during the project

The installation and configuration of the
mujoco-py library presented significant chal-
lenges, which impacted the progress and en-
gagement with the project. Below, we detail
the extensive efforts undertaken to set up the
required environment and the issues encoun-
tered at each stage.

6.1 Attempts to Install mujoco-py

The installation of mujoco-py, a library that
is no longer actively maintained, proved to be
exceptionally challenging. The following ap-
proaches were undertaken:

6.1.1 Native Installation on Ubuntu

A native installation was first attempted on
an Ubuntu partition. This process was hin-

dered by dependency issues and GPU driver
compatibility errors. Despite using multiple
versions of Ubuntu (three in total), each re-
quiring a full system re-installation, the errors
persisted. Different GPU drivers were tested
across these installations, but no combination
resolved the issues. The errors encountered
were diverse, including unknown GPU-related
errors, which lacked sufficient documentation
or online solutions.

6.1.2 Containerized Installation Using
Docker

As an alternative to a native installation, an
attempt was made to use an Ubuntu container
within Docker. While this method provided
some isolation, it introduced new types of er-
rors. Each error was addressed incrementally,

9

BSc of Data Science and AI - SUPSI

but unknown errors without searchable solu-
tions posed a significant roadblock.

Subsequently, a preconfigured VNC-ready
Ubuntu Docker container was used, which
successfully launched mujoco-py. However,
the rendered simulation failed to display the
robot arm or rag doll, leaving the setup unus-
able despite extensive debugging efforts.

6.1.3 Virtual Machine Setup on Win-
dows

Another strategy involved setting up an
Ubuntu virtual machine on Windows using
VirtualBox. This mirrored the steps taken in
the native installation but yielded the same
unresolved errors, further emphasizing the
limitations of the process.

6.1.4 Switching to the Modern Mu-
JoCo Library

Given the difficulties with mujoco-py, the
modern MuJoCo library, which is actively
maintained, was tested as an alternative. In-
stallation of the modern MuJoCo library was
straightforward, requiring only a simple pip

install mujoco command. The included de-
mos ran successfully, demonstrating the li-
brary’s functionality.

However, the project code provided was
specifically designed for mujoco-py and was
incompatible with the updated library. Initial
attempts were made to refactor the code for
compatibility with the new library, achieving
partial success. Unfortunately, progress was
halted by library-related errors that lacked de-
scriptive documentation, creating another im-
passe.

6.2 Broader Implications and
Observations

The challenges encountered during instal-
lation were not unique to this experience.
Anecdotal evidence from peers indicated
widespread difficulty in setting up mujoco-py.

In class, only two students managed to in-
stall the library successfully. Conversations
with students from prior years revealed sim-
ilar struggles, with some unable to complete
the installation altogether.

The time-consuming nature of these attempts,
which often spanned multiple days and ex-
ceeded 40 hours in total, detracted from the
core objectives of the project. For many
students, including us, this created a signifi-
cant barrier to engaging meaningfully with the
project. While the project itself was concep-
tually interesting, the overwhelming focus on
troubleshooting installation issues overshad-
owed the intended learning objectives.

To address this issue, a previous year’s stu-
dent graciously offered access to their home
computer, where mujoco-py was already in-
stalled after considerable effort. This allowed
work to continue but underscored the imprac-
ticality of the installation process.

6.3 Recommendations for Fu-
ture Iterations

Several measures could improve the experi-
ence for future cohorts:

• Transition to the Modern MuJoCo
Library: Updating the project code-
base to use the actively maintained Mu-
JoCo library would eliminate the re-
liance on the deprecated mujoco-py.

• Preconfigured Development Envi-
ronments: Providing preconfigured
Docker containers or virtual machines
with mujoco-py or its modern equiva-
lent installed could save significant time
and frustration.

• Clearer Guidance and Support: Of-
fering detailed installation instructions
and troubleshooting steps tailored to
the specific requirements of the project
would alleviate many common issues.

• Access to Ready-to-Use Lab Com-

10

BSc of Data Science and AI - SUPSI

puters: Doing the project from start
on lab computers with the environment
preinstalled would allow students to fo-
cus on the project’s objectives rather
than environmental setup.

6.4 Personal Reflection Of Our
Group

The installation process for mujoco-py was
a significant source of frustration and de-

tracted from the learning experience. While
this aspect of the project highlighted real-
world problem-solving challenges, the dispro-
portionate amount of time spent on setup,
compared to the project objectives, dimin-
ished overall engagement. Streamlining the
setup process in future iterations would en-
sure that students can direct their efforts to-
ward meaningful project outcomes.

7 Insights and Future Work

A brief summary of Insights and possible improvements for future work on RL

7.1 Key Insights

The project provided valuable insights into
the challenges and opportunities associated
with reinforcement learning (RL) for robotic
control tasks. Through iterative experimen-
tation and troubleshooting, the following key
points were identified:

• Reward Function Design: Craft-
ing an effective reward function is crit-
ical to guiding the agent toward de-
sired behaviors. The iterative approach
taken here, combining proximity-based
rewards, penalties for undesired rota-
tions, and explicit target goals, proved
essential in achieving consistent perfor-
mance.

• Exploration vs. Exploitation: Bal-
ancing exploration and exploitation dur-
ing training required careful adjustment
of hyper-parameters. While the default
settings were generally effective, tuning
learning rates and discount factors high-
lighted the trade-offs between stability
and learning speed.

• Environmental Factors: The agent’s
behavior underscored the importance
of environment-specific considerations.
For example, penalizing cube rotations

was necessary to address unintended so-
lutions that exploited the reward system
without fulfilling the task requirements.

• Observability and Metrics: Modify-
ing the simulation to include additional
metrics, such as cube height and grasp
count, significantly improved the abil-
ity to diagnose and correct issues dur-
ing training. These metrics provided ac-
tionable insights into the agent’s learn-
ing progress.

Despite the challenges encountered, the
project demonstrated the potential of RL
techniques to solve complex robotic tasks.
The hands-on experience reinforced a deeper
understanding of RL principles and their prac-
tical implementation.

7.2 Recommendations for Fu-
ture Efforts

Building upon the lessons learned during this
project, several recommendations are pro-
posed to streamline future efforts and improve
outcomes:

• Improved Setup and Tooling: Tran-
sitioning to the modern MuJoCo li-
brary as said before, would simplify the

11

BSc of Data Science and AI - SUPSI

setup process and reduce time spent on
troubleshooting outdated dependencies.
Providing pre-configured environments
or cloud-based solutions would further
mitigate installation challenges.

• Reward Function Optimization:
Future projects could explore auto-
mated methods for designing and tuning
reward functions, such as using genetic
algorithms or neural architecture search
techniques, to reduce reliance on trial-
and-error approaches.

• Enhanced Metrics and Visualiza-
tion: Integrating comprehensive met-
rics into the training pipeline, along
with real-time visualization tools, would
enable more precise monitoring of agent
behavior and accelerate debugging.

• Transfer Learning: Exploring trans-
fer learning approaches could shorten
training times by leveraging pre-trained
models or reusing knowledge from re-
lated tasks.

• Robustness Testing: Expanding the
testing framework to include diverse sce-
narios, such as varying cube positions
or unexpected obstacles, would improve
the robustness and generalization of the
trained policy.

• Documentation: Developing detailed
documentation for the setup, implemen-
tation, and troubleshooting processes
would enhance accessibility for future
teams.

7.3 Final Thoughts

This project highlighted the complexities in-
herent in applying RL to real-world robotic
problems. While the challenges were signifi-
cant, they underscored the importance of re-
silience, creativity, and critical thinking in
tackling technical obstacles. By addressing
the identified limitations and building on the
successful aspects of this work, future efforts
can achieve even greater success in advancing
RL for robotics applications.

8 Conclusions and Acknowledgments

The journey through this project has been both challenging and rewarding. While the initial
goals seemed straightforward—training a robot arm to grasp and lift a cube—the practical
execution involved navigating numerous complexities, from designing an effective reward func-
tion to overcoming significant setup and tooling hurdles. Despite these challenges, the project
provided a valuable opportunity to delve into the practicalities of reinforcement learning (RL)
and apply theoretical concepts to a real-world problem.

One of the most significant lessons learned was the importance of crafting a well-balanced reward
function. Early versions of our reward function, while functional, often led the agent to exploit
loopholes, such as balancing the cube on its vertex rather than lifting it properly. Through
iterative design and testing, we developed a reward system that guided the robot arm to
consistently achieve the task while avoiding unintended behaviors. This process emphasized the
iterative nature of machine learning, where trial and error are not just expected but necessary
for success.

The project also underscored the critical role of observability during training. By introducing
custom metrics such as cube height, grasp counts, and distance to the target, we gained deeper
insights into the agent’s learning process. These additions allowed us to diagnose issues and

12

BSc of Data Science and AI - SUPSI

make informed adjustments without waiting for entire training cycles to complete, greatly
accelerating our progress.

On a practical note, the technical challenges—particularly the difficulties with the deprecated
mujoco-py library—added a layer of frustration but also highlighted the importance of adapt-
able problem-solving skills. Ultimately, leveraging a preconfigured environment allowed us to
focus on the RL task itself rather than the setup process, a lesson we hope will inform future
iterations of this project.

Looking forward, there are several areas where the work could be extended or improved. For
example, refining the reward function further or experimenting with automated tuning methods
could lead to even more robust solutions. Incorporating transfer learning or pre-trained models
might also shorten training times and expand the complexity of tasks the robot can handle.

Lastly, we would like to express our gratitude to those who supported us throughout this project.
Special thanks go to our classmates and a previous-year student who kindly offered their re-
sources and insights to help us overcome technical roadblocks. Additionally, we appreciate the
teaching team for their guidance, even as we navigated some unexpected hurdles. While the
process was not without its frustrations, the project ultimately reinforced our understanding
of reinforcement learning (pun intended) and gave us a deeper appreciation for the challenges
of robotic control tasks.

In conclusion, while there were moments of difficulty and setbacks, the experience has been
overall educational. It allowed us to blend theory with practice and provided a foundation for
tackling similar challenges in the future. We leave this project with a sense of accomplishment
and a stronger grasp of RL concepts, ready to apply these skills to new and exciting problems.

13

	Problem Definition
	Task Overview
	Objectives of the Project

	Provided Setup
	Codebase and Structure
	Simulation Environment
	Robot Description

	Reward Function Design
	Conceptual Approach
	State Management
	Intermediate Rewards
	Additional Components (e.g., Rotation Penalty)
	Merging

	Experiments and Methodology
	Reward Function Iterations
	Hyperparameter Tuning

	Results and Observations
	Training Performance and Behavior
	Challenges: The "Balancing Maneuver"
	Enhanced Observation and Data Logging
	Insights From Iterative Refinement

	Challenges Encountered
	Attempts to Install mujoco-py
	Native Installation on Ubuntu
	Containerized Installation Using Docker
	Virtual Machine Setup on Windows
	Switching to the Modern MuJoCo Library

	Broader Implications and Observations
	Recommendations for Future Iterations
	Personal Reflection Of Our Group

	Insights and Future Work
	Key Insights
	Recommendations for Future Efforts
	Final Thoughts

	Conclusions and Acknowledgments

