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Abstract

This report presents the development of a vision-guided pick-and-place system integrating com-
puter vision and robotic control. The system detects, localizes, and manipulates objects using
advanced techniques like PCA and ICP for pose estimation and alignment. Calibration meth-
ods ensure accuracy in mapping between the camera and robot frames. Experiments validate
the system’s performance on circular tapes, highlighting challenges and potential improvements
for broader applications. The proposed pipeline offers a scalable approach to automating object
handling tasks in industrial settings.
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1 Problem Definition

1.1 Task Overview

Our project focuses on the vision-guided pick-
ing of tapes placed randomly on the work-
table. These objects, identifiable by their cir-
cular shape and distinct inner holes, were se-
lected due to their consistent structure, mak-
ing them suitable for both segmentation and
robotic manipulation. The tapes are placed
on a black working surface to facilitate ob-
ject detection through contrast-based meth-
ods, ensuring clear isolation of the parts from
the background.

1.2 Objectives of the Project

The primary goal is to design a system that
detects and localizes objects in images using
computer vision. More complex objects pro-
vide an additional challenge and help demon-
strate the robustness of the approach. Once
detected, the system calculates the 3D coordi-
nates of these objects, enabling precise robotic

The task involves detecting the precise posi-
tion and orientation of the tapes in the im-
age using computer vision techniques. Once
localized, the robot calculates an appropriate
picking pose to successfully grasp and place
the tapes in an organized manner. This ap-
proach allows for a robust and accurate pick-
and-place operation, demonstrating the inte-
gration of image processing, pose estimation,
and robotic control.

manipulation. The project also seeks to estab-
lish a seamless pipeline that integrates image
processing, calibration, and robotic control
into an end-to-end workflow. Ultimately, the
system should accurately command a FANUC
robot to pick up and place objects in prede-
fined locations.

2 Provided Setup

Codebase structure and pipeline overview

2.1 Codebase and Structure

The project is built on a modular codebase comprising calibration scripts, vision and detection
algorithms, robot control modules, and utility libraries. The individual scripts play important
roles in enabling the vision-guided pick-and-place system to operate efficiently.

e extrinsic_calibration:  Focuses on
aligning the camera and robot frames
by solving the extrinsic calibration prob-
lem. It begins by detecting chessboard
corners in undistorted images, refining
their positions, and using the PnP algo-
rithm to compute rotation and transla-

tion matrices. The computed transfor-
mation matrix is saved for future use,
and visualization tools are included to
verify calibration.

e image _support: Provides utility func-
tions for rigid registration of 3D points,
constructing transformation matrices,



and 3D visualization. It also includes
functions for interactive scatter plots
of point clouds and drawing coordinate
axes on images, aiding in debugging and
calibration validation.

e intrinsic_calibration: Calibrates the
camera’s intrinsic parameters by ana-
lyzing chessboard images. It estimates
the camera matrix, lens distortion coef-
ficients, and refines them using subpixel
corner detection, ensuring precise cam-
era calibration.

e robot_control: Provides a compre-
hensive set of functions for controlling
FANUC robots via Ethernet/IP com-
munication. It supports both joint and
Cartesian movements, reads and writes
positions, and controls the gripper’s ac-
tions, among other features.

2.2 Pipeline Overview
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e vrobot_control: Extends the function-

ality of robot_control by adding image
acquisition capabilities. It automates
the process of capturing images through
the robot’s onboard camera, triggering
TP programs, retrieving compressed im-
age files, and converting them for pro-
cessing.

main file: Demonstrates an end-to-end
example of robot control and image ac-
quisition. It initializes communication
with the robot, retrieves its Cartesian
position, and controls the gripper while
capturing images.

fanuc_driver: The low-level driver, en-
abling Ethernet /TP communication with
the robot. It ensures reliable execu-
tion of commands, such as reading and
writing positions, and monitoring robot
states.

The vision-guided pick-and-place system follows a robust and structured pipeline that integrates
computer vision and robotic control to accurately detect, localize, and manipulate objects. The

pipeline consists of several steps:

2.2.1 Camera and Robot Initialization

e Camera Calibration: The cam-
era’s intrinsic parameters (camera ma-
trix K and distortion coefficients dist)
and the extrinsic transformation matrix
(cam2robot) between the camera and
robot are loaded from precomputed files
(intrinsics.npz and cam2rob.pkl).

e Robot Setup: A connection to the
FANUC robot is established via its IP
address (192.168.1.12). A go_home
function ensures that the robot starts
from a predefined home position.

2.2.2 Image Acquisition and Prepro-
cessing

e The robot captures an image using its
onboard camera.

e The captured image is undistorted using

the camera parameters to eliminate lens
distortions and provide accurate spatial
information.

e The image is converted to grayscale and

thresholded to create a binary image
that isolates objects against the black
background.

2.2.3 Object Detection and Shape

Matching

e Connected Components Analysis:

A preprocessing function (preprocess)
filters the binary image by identifying
connected components, removing noise,
and selecting valid objects based on size
and aspect ratio (e.g., area between 1000
and 8000 pixels, aspect ratio between



0.5 and 2.0).

e Template Matching: The pipeline
matches the contours of detected ob-
jects against a predefined template us-
ing contour matching (matchShapes),
which computes similarity based on Hu
moments values. A threshold for valid
matches is set at n (where n depends on
the template’s complexity and the dis-
tinctiveness of the object, and lower val-
ues indicate closer matches).

2.2.4 Centroid Calculation and Princi-
pal Component Analysis (PCA)

e For each matched contour, the centroid
(center of mass) is calculated using im-
age moments.

e Principal Component Analysis
(PCA): PCA is applied to extract the
principal directions (eigenvectors) of the
detected objects, which helps estimate
their orientation.
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2.2.5 Coordinate Transformation

¢ Pixel to Camera Coordinates: The
centroid coordinates (in pixels) are
transformed into camera coordinates,
assuming a fixed working distance (7, =
835 mm).

e Camera to Robot Coordinates:
The camera coordinates are then con-
verted into robot coordinates using
the pre-calculated transformation ma-
trix (cam2robot).  This ensures the
robot can move accurately to the ob-
ject’s position in its workspace.

2.2.6 Robot Movement to Detected
Objects

e The robot is commanded to move to the
detected object positions by calculating
the new coordinates with necessary off-
sets.

e The robot’s gripper is controlled to pick
up the object, and once the task is com-
pleted, the robot moves back to its home
position.

This pipeline enables a robust vision-guided pick-and-place system, where the robot accurately
detects, localizes, and manipulates objects based on real-time image analysis.

3 Calibration

3.1 Intrinsic Calibration

The intrinsic calibration process involves ana-
lyzing chessboard images to compute the cam-
era matrix and lens distortion coefficients. By
using subpixel corner detection, the calibra-
tion achieves high precision, ensuring accurate
measurements. Distortion correction further
refines these parameters, enabling reliable ob-

3.2 Extrinsic Calibration

ject localization in the robot’s workspace.

This step is critical in ensuring that the robot
can accurately interpret images taken from
the camera. Correct calibration is essential
for object localization and precise robotic ma-
nipulation.



Extrinsic calibration aligns the camera frame
with the robot frame using the PnP
(Perspective-n-Point) algorithm. The pro-
cess calculates rotation and translation matri-
ces, which are validated through visualization
tools. The final output is a transformation
matrix that facilitates mapping coordinates
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between the two frames, ensuring seamless in-
tegration of vision and robotic systems.

This calibration step ensures that the robot
and camera are operating in sync, with the
correct coordinate system transformations al-
lowing for precise object manipulation in the
robot’s workspace.

4 Experiments and Methodology

This section provides an overview of the experimental setup, methodology, and
the hyperparameter tuning process.

4.1 Object Picking

The object-picking experiments were designed
to explore two key methods: the Itera-
tive Closest Point (ICP) algorithm for circu-
lar tapes and Principal Component Analysis
(PCA) for markers and pipes. The ICP algo-
rithm was particularly effective in aligning the
reference shapes with the target shapes, facil-
itating accurate registration. This alignment
process is crucial for the robotic manipulation
of circular tapes, allowing the robot to con-
sistently pick and place the objects in a con-
trolled manner. The ICP technique proved to
be efficient in handling slight misalignments
or deformations in the circular shape, ensur-
ing the stability of the picking process.

PCA, in contrast, was employed to calculate
the orientation and barycenters of markers
and pipes. The use of PCA for these objects
enabled an understanding of their spatial posi-
tioning, which is important for identifying the
objects’ centers and aligning them for picking.
The PCA method exhibited promising results
in detecting the overall orientation of markers
and pipes, but it faced challenges in reliably
determining object location when the mark-
ers or pipes were tilted or obscured. While
PCA’s results were generally accurate in con-
trolled settings, further testing is needed to
evaluate its performance in real-time robotic

applications, especially in the context of vary-
ing orientations and environments.

4.2 Threshold and Template
Matching Tuning

Thresholding and template matching were key
components of the object-detection pipeline.
To improve the detection of objects, adap-
tive thresholding was implemented to isolate
the objects from the black background, ensur-
ing that the foreground was clearly separated
from the surrounding environment. This sepa-
ration was vital for minimizing false positives
during object recognition. However, thresh-
olding alone was insufficient for detecting ob-
jects in environments with varying lighting
conditions, so it was coupled with an opti-
mized template-matching technique.

Template matching was further refined to im-
prove the recognition of valid object contours
while excluding noise and other extraneous el-
ements that might interfere with detection.
The matching algorithm was tuned to recog-
nize specific object features more accurately,
reducing the chance of incorrectly identifying
objects in cluttered scenes. By adjusting vari-
ous parameters within the template-matching
algorithm, such as the matching threshold and



the shape parameters, the accuracy of the
detection system was significantly enhanced.
This refinement led to better identification of
complex shapes, particularly those that were
difficult to distinguish from the background or
other objects.

The improved thresholding and template-
matching processes resulted in a more ro-
bust system for object detection, especially
for more intricate objects with similar visual
features. These improvements also reduced
the system’s susceptibility to errors caused by
background noise, leading to higher overall de-
tection accuracy and reliability.

4.3 Generalizing the Codebase

To ensure that the object-detection pipeline
could adapt to a wide range of environments
and object types, significant work was done
to generalize the underlying codebase. One
of the key objectives was to enhance the sys-
tem’s ability to operate under various light-
ing conditions. Initially, we attempted to in-
tegrate adaptive thresholding into the code-
base, aiming to automatically adjust detec-
tion parameters based on changes in light in-
tensity or environmental conditions. How-
ever, despite several trials, we were unable to
achieve consistent results with this automatic
adjustment, especially under fluctuating light-
ing conditions.

As a result, we opted to create different con-
figuration files for manual thresholding ad-

BSc of Data Science and Al - SUPSI

justments, which were refined after multiple
iterations. In these files, thresholding val-
ues were manually adjusted to improve the
detection performance across different light-
ing environments, ensuring better consistency
with slight changes in light intensity. Al-
though this approach required additional ef-
fort and lacked the flexibility of automatic ad-
justments, it helped to improve the system’s
robustness when the lighting conditions var-
ied, particularly in indoor or controlled envi-
ronments.

We also focused on refining the codebase to
handle multiple objects, but we did not intro-
duce multi-object template matching at this
stage. Instead, we made optimizations to im-
prove the detection of individual objects in
cluttered scenes. Although the system could
detect single objects reliably, handling mul-
tiple objects in the same scene remains an
area for future development. Further work
will be needed to implement a robust solution
for multi-object detection, which will be criti-
cal for tasks that involve the manipulation of
several objects simultaneously.

By making these adjustments, the codebase
has become more adaptable to dynamic en-
vironments, but further work is required to
enhance the system’s robustness in real-world
scenarios. These ongoing efforts aim to extend
the pipeline’s utility, making it a more reliable
tool for object-picking tasks, even in environ-
ments with unpredictable lighting or varying
object orientations.

5 Results and Observations

5.1 Performance and Behavior

The system successfully demonstrated its abil-
ity to detect, localize, and manipulate circular
tapes with high accuracy. The Iterative Clos-
est Point (ICP) algorithm for circular tapes
enabled the precise alignment of reference and

target shapes, ensuring that the robotic ma-
nipulator could reliably pick up and handle
objects. The system’s ability to consistently
perform, in a closed and controlled environ-
ment, object-picking tasks without significant
errors was a key achievement, showcasing its
potential for real-world applications. The sys-



tem was particularly effective when dealing
with simple, well-defined shapes such as circu-
lar tapes, where the ICP method excelled in
minimizing misalignment and handling slight
deformations.

In addition to circular tapes, the Principal
Component Analysis PCA-based approach for
markers and pipes showed promising results.
PCA was able to compute the orientation and
barycenters of these objects with good preci-
sion, which is crucial for correctly identifying
the spatial position and orientation of non-
circular objects. However, the PCA method’s
performance was more sensitive to variations
in object orientation and occlusion. Despite
these challenges, the results indicated that
PCA could be a valuable tool for handling
more complex shapes, but it requires further
validation and refinement to improve its relia-
bility and robustness, particularly in dynamic
or cluttered environments.

The combination of ICP and PCA methods
proved to be beneficial, as they leveraged each
other’s strengths. While ICP provided pre-
cise alignment for circular objects, PCA con-
tributed to accurate orientation and position
estimation for markers and pipes. Integrating
these approaches into a unified system could
significantly enhance the overall robustness
and flexibility of the object-picking pipeline,
allowing the system to handle a wider range
of object types and complex scenarios.

5.2 Challenges

Several challenges emerged throughout the
project, highlighting areas for further devel-
opment. One of the primary challenges was
the calibration process, which required multi-
ple iterations to address alignment errors.

5.2.1 Repeated Calibration

Frequent recalibration was necessary due to
the sensitivity of the system to camera dis-
placements and changes in intrinsic parame-
ters. One of the primary challenges was the
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calibration process, which required multiple
iterations to address alignment errors. These
errors were primarily caused by slight changes
in the camera’s focus and aperture, result-
ing in misalignment between the reference and
target shapes. While the system performed
well when the camera was stable, even minor
shifts in the camera position led to notice-
able deviations in object detection and ma-
nipulation. This iterative calibration process,
although time-consuming, was essential for
maintaining alignment accuracy, as small mis-
alignments could significantly affect the sys-
tem’s overall performance. This challenge un-
derscored the importance of more robust cali-
bration techniques that could account for mi-
nor positional shifts and eliminate the need
for frequent manual adjustments.

5.2.2 Lighting Sensitivity

Another significant challenge was the effect
of varying lighting conditions on segmenta-
tion and object detection. The system’s re-
liance on thresholding for object isolation was
heavily influenced by changes in lighting in-
tensity and shadowing. In low-light condi-
tions or environments with uneven lighting,
the object detection process became less reli-
able, leading to misclassifications and missed
detections. The sensitivity of the threshold-
ing algorithm to lighting variations pointed
to the need for more adaptive and robust al-
gorithms that can adjust to different lighting
conditions automatically. Additionally, envi-
ronments with strong contrasts or fluctuat-
ing light levels could cause significant diffi-
culties in object segmentation. These chal-
lenges emphasized the necessity for algorithms
that can handle real-time variations in am-
bient lighting, which is critical for deploying
the system in dynamic, unpredictable environ-
ments without requiring manual recalibration
or fine-tuning.



5.2.3 Object Orientation and Occlu-
sion

The integration of PCA for markers and pipes
revealed its limitations when dealing with
tilted or partially obscured objects. Although
PCA performed well under ideal conditions,
its accuracy sometimes decreased when ob-
jects were rotated or blocked by other items.
In such cases, the algorithm struggled to
detect and calculate the correct orientation,
leading to errors in manipulation. This limita-
tion highlighted the need for further improve-
ments in object orientation detection. Future
work could incorporate more advanced algo-
rithms that can handle partial occlusion or
more complex orientations, potentially inte-
grating additional sensors or utilizing more
sophisticated image processing techniques to
improve detection robustness. Developing so-
lutions that can address the challenges posed
by occluded or partially obscured objects will
be crucial for expanding the system’s ability
to handle a wider range of scenarios.

5.3 Enhanced Observations

The combination of ICP and PCA methods
provided complementary capabilities that en-
hanced the overall performance of the object-
picking system. ICP’s precision in aligning
circular objects was paired with PCA’s abil-
ity to determine the orientation and position
of markers and pipes. This synergy allowed
the system to address a broader range of ob-
ject types, but further refinement is needed to
ensure that the system can seamlessly switch
between the two methods depending on the
object type or scenario.
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Visualization tools played a critical role
throughout the project by enabling the de-
bugging and validation of the calibration pro-
cesses. These tools allowed the team to moni-
tor real-time feedback on the alignment of the
reference and target shapes, making it easier
to identify errors and adjust parameters ac-
cordingly. The ability to visualize object de-
tection, alignment, and orientation estimates
in real-time streamlined the workflow, allow-
ing for quicker adjustments and improved ac-
curacy during testing.

The development of these visualization tools
also contributed to the efficient validation of
the overall system performance. By provid-
ing visual representations of the objects, their
positions, and orientations, these tools helped
identify inconsistencies in the detection and
manipulation pipeline. They proved invalu-
able in verifying the results of the ICP and
PCA algorithms, ensuring that the system
was functioning as intended and that any is-
sues could be addressed promptly.

Overall, the observations from these experi-
ments emphasized the importance of integrat-
ing different algorithms and tools to tackle the
challenges inherent in object detection and
manipulation. The combination of ICP and
PCA methods, coupled with the use of effec-
tive visualization tools, laid the foundation for
a robust and adaptable system. However, on-
going work will be required to further opti-
mize the system’s performance, particularly in
terms of adaptive thresholding, multi-object
detection, and handling dynamic lighting con-
ditions.

6 Conclusions and Acknowledgments

6.1 Broader Implications

The results of this project highlight the trans-
formative potential of vision-guided robotic

systems in automating repetitive tasks across
various industries. These systems offer a scal-
able solution to tasks that demand high pre-
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Figure 1: Tape picking

cision and consistency, such as assembly lines,
quality control in manufacturing, and sorting
operations in logistics.

6.1.1 Industrial Relevance

The integration of robotic control with com-
puter vision enhances productivity by re-
ducing human intervention in monotonous
and error-prone tasks. This advancement is
particularly beneficial in environments where
safety is critical, such as hazardous material
handling or medical device assembly. Addi-
tionally, the system’s ability to adapt to dif-
ferent objects and conditions paves the way
for its application in dynamic industries, such
as e-commerce fulfillment centers and health-
care robotics.

6.1.2 Challenges to Scalability

Despite the promising results, scaling such
systems to real-world applications demands
addressing persistent challenges. Precision
calibration and robust detection algorithms
are prerequisites for reliable performance.
Moreover, sensitivity to environmental fac-
tors such as lighting variations and occlu-
sions requires advanced adaptability, both al-
gorithmically and in terms of hardware design.
These limitations highlight areas that need fo-
cused research and development to ensure the

scalability and dependability of such systems
in diverse operational settings.

6.2 Recommendations for Fu-
ture Iterations

The insights gained during this project lay
a strong foundation for future advancements.
Several recommendations for further develop-
ment are outlined below:

6.2.1 Extending Object Variety

Future work should test the ICP and PCA
approaches on a broader range of objects, in-
cluding those with irregular shapes, varying
textures, and complex orientations. This eval-
uation will provide deeper insights into the
generalization capabilities of the pipeline and
help refine its adaptability to real-world appli-
cations. In industrial applications, techniques
like YOLO, PointNet/PointNet++ and CNNs
are frequently employed to ensure robust ob-
ject detection and manipulation under varying
conditions.

6.2.2 Real-Time Error Correction

Incorporating real-time error correction mech-
anisms into the robotic control system could
significantly enhance its performance. For
instance, dynamic recalibration techniques



and feedback-driven adjustments during ob-
ject manipulation would mitigate the effects of
alignment errors and environmental changes.
Machine learning models trained on error pat-
terns could be integrated to predict and cor-
rect inaccuracies in object detection and ma-
nipulation on the fly.

6.2.3 Improving Algorithm Robust-
ness

Adaptive algorithms capable of handling
lighting variations and partial occlusions
should be a key focus for future iterations.
Techniques such as adaptive thresholding,
deep learning-based object detection, and
multi-modal sensing (e.g., combining vision
with depth sensors) can bolster the system’s
robustness.  Additionally, exploring sensor
fusion strategies could improve reliability in
challenging environments, such as those with
dynamic lighting or complex backgrounds.

6.3 Conclusion

This project successfully integrated computer
vision and robotic control to develop a vision-
guided pick-and-place system. The pipeline
demonstrated the feasibility of combining
ICP-based alignment, PCA-based pose esti-
mation, and precise calibration techniques to
achieve accurate manipulation tasks. The
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complementary strengths of ICP and PCA
were effectively leveraged to handle circular
tapes and markers or pipes, respectively, lay-
ing the groundwork for further exploration of
combined methods.

While the system’s capabilities were validated
in controlled environments, further work is re-
quired to enhance its adaptability and robust-
ness. Future iterations should focus on ex-
tending object diversity, implementing real-
time error correction mechanisms, and im-
proving algorithmic resilience to environmen-
tal variations. These advancements will en-
able the system to handle dynamic and un-
predictable scenarios, making it a viable solu-
tion for a wide range of industrial and research
applications.
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Figure 2: Tape stack

10



	Problem Definition
	Task Overview
	Objectives of the Project

	Provided Setup
	Codebase and Structure
	Pipeline Overview
	Camera and Robot Initialization
	Image Acquisition and Preprocessing
	Object Detection and Shape Matching
	Centroid Calculation and Principal Component Analysis (PCA)
	Coordinate Transformation
	Robot Movement to Detected Objects


	Calibration
	Intrinsic Calibration
	Extrinsic Calibration

	Experiments and Methodology
	Object Picking
	Threshold and Template Matching Tuning
	Generalizing the Codebase

	Results and Observations
	Performance and Behavior
	Challenges
	Repeated Calibration
	Lighting Sensitivity
	Object Orientation and Occlusion

	Enhanced Observations

	Conclusions and Acknowledgments
	Broader Implications
	Industrial Relevance
	Challenges to Scalability

	Recommendations for Future Iterations
	Extending Object Variety
	Real-Time Error Correction
	Improving Algorithm Robustness

	Conclusion
	Acknowledgments


